

Objetivos de Aprendizaje

- 1. Aprender la diferencia entre dispositivos de entrada "INPUT" y salida "OUTPUT".
- 2. Hacer un potenciómetro de papel DIY conectado a un micro:bit para enviar diferentes mensajes al girar un puntero.
- 3. Comprender el código y la programación de micro:bit para leer una señal de entrada y convertirla en las salidas deseadas.

Metas de la Actividad

- Explorar el concepto de entrada y salida (ver imagen a continuación) construyendo un modelo práctico que incorpora un potenciómetro de rotación analógico conectado a un micro:bit.
- Utilizar este modelo para explorar la relación entre el código y el flujo de información desde el potenciómetro analógico a través del micro:bit, incluido el procesamiento y la eventual transmisión a través del dispositivo de radio micro:bit.
- Utilizar el potenciómetro de papel DIY conectado a un microbit para explorar la diferencia entre variables discretas y continuas.

Materiales

Proporciona a cada grupo grupo (2-3 estudiantes) los siguientes materiales:

- 33 centímetros de cinta de cobre
- Plantilla de papel para potenciómetro
- Nota adhesiva pequeña
- micro:bit
- cable mini USB
- Computadora
- Tijeras

Precauciones de Seguridad

- Cuando los micro:bits no se utilicen durante un período prolongado, retira las baterías para evitar posibles fugas y daños al dispositivo.
- Guarda las baterías por separado en un contenedor de baterías designado.

Preparación Anticipada

- Tómate el tiempo necesario para ensamblar un potenciómetro y poder probarlo antes de esta actividad. Asegúrate de estar familiarizado con su ensamblaje y el código que utiliza el micro:bit para transformar la entrada del potenciómetro en la salida deseada.
- Prueba el código del potenciómetro usando el siguiente enlace: <u>https://makecode.microbit.org/gLyFEWCU1Kvq</u>

Procedimiento de la Actividad

- Motivar la discusión: Discute con los estudiantes cómo utilizamos los botones y controles deslizantes en nuestros dispositivos modernos, utilizando los teléfonos inteligentes como ejemplo. Puedes utilizar las siguientes indicaciones para esta discusión:
 - Piensa en la diferencia entre presionar botones y usar controles deslizantes en un teléfono inteligente o una tableta. ¿En qué se diferencia la experiencia de presionar un botón de la de deslizar un control?
 - ¿En qué situaciones encuentras uno más útil que el otro?
 - Comparte tus experiencias sobre cómo el diseño de botones y controles deslizantes afecta la forma en que se utilizan los dispositivos inteligentes.

2. Escucha estas ideas de los estudiantes:

- a. Los botones son interruptores que se utilizan para encender y apagar cosas, como la luz de un teléfono, mientras que los controles deslizantes se utilizan para aumentar o disminuir el volumen o el brillo de la pantalla.
- 3. Pide a los alumnos que consideren las limitaciones del uso de botones y cómo los controles deslizantes pueden ampliar la gama de aplicaciones en los dispositivos modernos. Estas son algunas de las ideas que los alumnos deberían mencionar:
 - a. Los botones generalmente dan como resultado dos resultados (por ejemplo, encendido y apagado).
 - b. Los controles deslizantes pueden producir muchos resultados diferentes, como ajustar el brillo de la luz a cualquier intensidad deseada.
- 4. Utiliza sus ideas como motivación para aprender más sobre los controles deslizantes.
- 5. Presenta el potenciómetro como una herramienta que nos ayudará a entender los controles deslizantes. Organiza la clase en grupos de 2 o 3 alumnos y distribuye los materiales.
- 6. Utiliza el proyector para mostrar la imagen que aparece a continuación y pídele a los alumnos que utilicen los materiales para conectar la cinta de cobre del potenciómetro al micro:bit, como se muestra en la imagen. Muestrales la nota adhesiva (papel rosa en la imagen de la izquierda o papel naranja en la de la derecha) y asegúrate de que los alumnos la coloquen en la posición correcta.

Si solo usas cinta de cobre, el potenciómetro va a verse como la imagen de la derecha.

7. Una vez que los alumnos terminen de ensamblar el micro:bit y el potenciómetro, proyecta la imagen a continuación para analizar cómo el potenciómetro afecta la cantidad de electricidad que fluye a través del micro:bit. Resalta la longitud del recorrido como el mecanismo que permite a los usuarios cambiar la cantidad de resistencia en el sistema.

- 8. Utiliza esta oportunidad para introducir el término 'entrada'. Puedes decir algo como: Los dispositivos de entrada son dispositivos físicos que nos permiten enviar datos al micro:bit (o dispositivo informático) que pueden desencadenar acciones específicas. Cuando presionamos un botón en el micro:bit o cambiamos la resistencia con el potenciómetro, estamos enviando entradas a la computadora para realizar acciones específicas.
- 9. Pídele a los alumnos que conecten su micro:bit a la computadora mediante el cable USB. Puedes obtener más información sobre cómo conectar el micro:bit <u>aquí</u>.
- 10. Pídele a los alumnos que descarguen <u>el código</u> en su micro:bit. Encuentra más información sobre cómo transferir el código al micro:bit <u>aquí.</u>
- 11. Revisa y analiza el código con los alumnos. Ayúdalos a comprender cómo se relaciona el código con la entrada que recibe del potenciómetro y la cantidad de LED que se encienden en el micro:bit. En el código que se utiliza aquí, le indicamos al micro:bit que encienda una cantidad específica de LED en función de la resistencia que cambiamos con el potenciómetro.

forever									
if analog read pin 92 • < 380 then									
show leds	ſ								
	ENTRADA (corriente)								
SALIDA (brillo)									
else if anglos	read ain	P7 • 2		and •		d nin P2 •		•	hen 🔾
else tr	read prin				anotog rec	a pen ve s			
show Leds									
	- a - a								
	1 N								
	1 N N								
else if analog	g read pin	P2 • 2 •	500	and •	analog rea	d pin P2 •	- n	10) t	hen Θ
show leds	- 14 - 14								
	- N N								
else if analog	g read pin	P2 • ≥ •	780		analog rea	d pin P2 -	< 9	10) t	hen Θ

- 12. Introduce el término de 'salida'. Puede decir algo como: Una computadora, como la micro:bit, tiene dispositivos físicos como la pantalla o el altavoz que nos comunican información. Por ejemplo, la cantidad de LED que nos indican la cantidad de resistencia o la reproducción de un sonido son ejemplos de salidas.
- 13. Menciona que las salidas principales del micro:bit son la matriz de LED, el sonido a través del altavoz o zumbador incorporado y las señales de radio que puede enviar para comunicarse con otros dispositivos.
- 14. Permite que los alumnos utilicen el potenciómetro para cambiar diferentes salidas. Invita a algunos voluntarios a compartir lo que descubrieron durante esta exploración. Las salidas adicionales incluyen cambiar las imágenes que muestra la pantalla LED o los sonidos que puede producir el micro:bit.
- 15. Utiliza las siguientes indicaciones para debatir con los alumnos:
 - a. ¿Qué otras aplicaciones creemos que hacen uso de controles deslizantes? ¿Cómo podríamos utilizar un botón para realizar la misma función?
 - b. ¿Cómo podríamos utilizar el potenciómetro para enviar señales de radio a otros micro:bits?

- c. ¿Cuáles son las limitaciones de este potenciómetro de papel?
- d. ¿Cómo crees que funciona el control deslizante para aumentar o disminuir el brillo de la pantalla? ¿Cuál es la entrada? ¿Cuál es la salida?
- 16. Pídele a los alumnos que presenten al resto algunas de las formas en que adaptaron el uso del potenciómetro. Si trabajas con grupos más grandes, pídele a los alumnos que presenten su trabajo con uno o dos compañeros.
- 17. Analiza las entradas y salidas que exploraron los alumnos. Utiliza las siguientes preguntas:
 - ¿Qué resultados adicionales exploraron?
 - ¿Cómo usaron el potenciómetro para cambiar la salida?

Notas para el Educador

Trabajar con grupos pequeños: Si trabajas con grupos pequeños, pídele a los alumnos que compartan entre sí los resultados que probaron antes de invitarlos a compartirlos con toda la clase.

Trabajar con grupos grandes/clases: Si algunos grupos terminan antes, anímalos a modificar el código para explorar cómo se modifican las salidas del micro:bit.

Modificaciones: Los estudiantes pueden usar pinzas de cocodrilo para conectar el potenciómetro al micro:bit.

Preguntas para discutir en clase

- ¿Qué otras aplicaciones creemos que hacen uso de los controles deslizantes? ¿Cómo podríamos utilizar un botón para realizar la misma función?
- ¿Cómo podríamos utilizar el potenciómetro para enviar señales de radio a otros micro:bits?
- ¿Cuáles son las limitaciones de este potenciómetro de papel?

• ¿Cómo crees que funciona el control deslizante para aumentar o disminuir el brillo de la pantalla? ¿Cuál es la entrada? ¿Cuál es la salida?

Contexto del Contenido

¿Qué es un potenciómetro?

Un potenciómetro funciona modificando la cantidad de electricidad que fluye a través de él, generalmente con una perilla o un control deslizante. Por ejemplo, las perillas de control de volumen de las luces: a medida que giras la perilla, el sonido se hace más fuerte o más bajo según la dirección en la que la giras.

Piensa en el potenciómetro como una pequeña puerta por la que tiene que pasar la electricidad para llegar a una bombilla. El potenciómetro puede hacer que la puerta sea más grande o más pequeña, de modo que pueda pasar más o menos electricidad. Y cuanto más electricidad fluya, más brillante será la bombilla.

En nuestro potenciómetro, al cambiar el dial también se modifica la longitud y la cantidad de material por el que debe pasar la corriente eléctrica. Por lo tanto, se utiliza un potenciómetro para cambiar la cantidad de resistencia en un circuito y el voltaje resultante. Por este motivo, a los potenciómetros a veces se los llama divisores de voltaje.

La ciencia detrás de los potenciómetros

El potenciómetro es una herramienta útil para cambiar la cantidad de energía que entra en el micro:bit. Nos permite enviar diferentes cantidades de energía girando el puntero de papel. Funciona como un grifo que puede enviar un poco de energía, mucha energía o algo intermedio. Por ejemplo, podemos programar el micro:bit para que reproduzca un sonido cuando recibe poca energía. ¡Podemos usar el potenciómetro para hacer que el micro:bit haga todo tipo de cosas!

Lista de Términos Relacionados con esta Actividad

Entrada: Las entradas son dispositivos físicos que nos permiten enviar datos al micro:bit (o dispositivo informático) que pueden desencadenar acciones específicas. Cuando presionamos un botón en el micro:bit o cambiamos la resistencia con el potenciómetro, estamos enviando entradas al ordenador para que realice acciones específicas.

Salida: Un ordenador, como el micro:bit, tiene dispositivos físicos como la pantalla o el altavoz que nos comunican información. Por ejemplo, la cantidad de LED que nos indican la cantidad de resistencia o la reproducción de un sonido son ejemplos de salidas.

Developed with funding from the National Science Foundation under award number #2053160. Copyright 2024, BSCS Science Learning. Published under a Creative Commons Attribution-Noncommercial-ShareAlike license:

http://creativecommons.org/licenses/by-nc-sa/3.0/us/

This material is based on work supported by the National Science Foundation under award number #2053160. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the view of the National Science Foundation.